CENTRAL AIR CONDITIONER TUNE-UP REPORT | First Name: Last Name: | | | Consumers Energy Account Number: | | | |--|--------|-------------------------|----------------------------------|------------|--| | Street Address (where equipment was serviced): | | | | | | | City: | | State: | | ZIP: | | | Homeowner's Email | | | Home Phone: | | | | (to receive rebate status updates): | | | | | | | Contractor Name: | | | Contractor Phone: | | | | | , | | | | | | ☐ Natural Gas Furnace or ☐ Air Handler | Furnac | e or AHU Manufacturer | | Rated TESP | | | ☐ Condensing Unit or ☐ Heat Pump | Model | # | Serial # | | | | SEER (if known) | Conde | nsing Unit Manufacturer | | Tons | | | Service Date | Model | # | Serial # | | | | Indoor Coil (tons and ref. control only if in air handler) | Indoor | Coil Manufacturer | | Tons | | | | Meteri | ng Device TXV Fixed | | | | Air conditioning tune-up services must be performed between May 1 and September 30, 2017, to qualify. | | Test Results | Before | After* | Comments | | |-------------|---|--------|-----------------|---|--| | Required | Fan Airflow (measured/verified) [†] | @ | @ | Ideally this system should haveCFM | | | | Coil Entering WB Temp [†] | | | Coil entering conditions—measure to 1 decimal place F | | | | Coil Leaving WB Temp† | | | Coil leaving conditions—measure to 1 decimal place F | | | | Coil Capacity | BTUH | BTUH | BTU = CFM x 4.5 x Δ Enthalpy | | | | ÷ Equipment Nominal BTU | BTUH | BTUH | Manufacturer's rated nominal cooling BTUH | | | | Coil Capacity/System Nominal = System Effective Efficiency [†] | % | % | | | | | System Watts | | | Watts = measured Volts x measured Amps | | | led | Room Return Air DB (opt) | °F | °F | Compare to coil entering DB (optional) | | | menc | Farthest Room Supply DB (opt) | °F | °F | Compare to coil leaving DB (optional) | | | Recommended | Charge Verification | | Added Recovered | Quantity: Lb. Oz. | | | But | Condenser Entering Air DB | °F | °F | Outdoor air temperature | | | Optional | Suction/Liquid Line Pressure | | | Needed to check refrigerant charge | | | Opti | Suction/Liquid Line Temperatures | | | Needed to check refrigerant charge | | | | Actual/OEM Specified | | | ☐ Superheat ☐ Subcooling ☐ Approach | | ^{*}If initial readings are 85 percent or less, post-maintenance calculations are required. [†]Mandatory values. System efficiency calculated on back of form. ## CENTRAL AIR CONDITIONER TUNE-UP REPORT | Calculation Worksheet | -Before | | | | | | | | | | |--|---|---|--|--|--|--|--|--|--|--| | System Watts (Power): | | | | | | | | | | | | Blower Motor | Volts | x Amps | =Wati | 'S | | | | | | | | Compressor | | x Amps | | :S | | | | | | | | Condenser Fan | | • | =Wati | | | | | | | | | Condenser Fair | | | | .5 | | | | | | | | Add the above to get total system watts Converting Wet Bulb to Enthalpy (Measure all temperatures to first decimal place and record Enthalpy to two decimal places.): | | | | | | | | | | | | _ | | | | decimai piaces.j. | | | | | | | | | | BTU/Lb Enthalpy a | | | Complete these calculations | | | | | | | | | BTU/Lb Enthalpy b | | | to get coil capacity. System efficiency is coil | | | | | | | Coil Capacity: CFM | x 4.5 x (Entha | alpy a - b) = _ | BTUH | | capacity ÷ nominal capacity. | | | | | | | System Effective Efficiency | /: Coil Capacity: | ÷ | Equipment Normal Capacity | ·=% | | | | | | | | Tune-Up Procedures | Check all that apply | | | | | | | | | | | As a minimum, the following | g were accomplished: | Comments: | | | | | | | | | | ☐ Inspected filter, cleaned standard filters | or replaced | | | | | | | | | | | ☐ Cleaned condenser coil | | | | | | | | | | | | ☐ Inspected evaporator c cleaning as needed | oil, recommended | | | | | | | | | | | Adjusted airflow | | | | | | | | | | | | Adjusted refrigerant cha | _ | | | | | | | | | | | Inspected electrical con | nections and wire | Calculation Worksheet | - After (Required if "B | Refore" efficiency is less | than 85% of nominal) | | | | | | | | | | –After (Required if "B | Before" efficiency is less | than 85% of nominal) | | | | | | | | | System Watts (Power): | | | | | | | | | | | | System Watts (Power): Blower Motor | Volts | x Amps | =Watt | | | | | | | | | System Watts (Power): Blower Motor Compressor | Volts | x Amps
x Amps | =Watt | es . | | | | | | | | System Watts (Power): Blower Motor | Volts | x Amps
x Amps | =Watt | es . | | | | | | | | System Watts (Power): Blower Motor Compressor | VoltsVolts | x Amps
x Amps | =Watt
=Watt
=Watt | es . | | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En | VoltsVoltsAdd th | x Ampsx Ampsx Amps e above to get total system peratures to first decimal place. | =Watt =Watt =Watt =Watt watts ce and record Enthalpy to two | s
s | | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan | VoltsVoltsAdd th | x Amps
_ x Amps
_ x Amps
ne above to get total system | =Watt =Watt =Watt =Watt watts ce and record Enthalpy to two | s
s | Complete these calculations | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En | Volts VoltsAdd th thalpy (Measure all temp | x Ampsx Ampsx Amps e above to get total system peratures to first decimal place. | =Watt =Watt =Watt =Watt watts ce and record Enthalpy to two | s
s | to get coil capacity. | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB | VoltsVoltsAdd th thalpy (Measure all temp | x Ampsx Ampsx Ampsx Amps ne above to get total system peratures to first decimal placements. BTU/Lb Enthalpy a | =Watt =Watt =Watt =Watt watts ce and record Enthalpy to two | s
s | • | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB Coil Capacity: CFM | Volts | x Ampsx Ampsx Amps x Amps a above to get total system peratures to first decimal playeratures to first decimal playeratures are grown and the state of th | =Watt =Watt =Watt =Watt watts ce and record Enthalpy to two | decimal places.): | to get coil capacity. System efficiency is coil | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB Coil Capacity: CFM | Volts | x Ampsx Ampsx Amps x Amps a above to get total system peratures to first decimal playeratures to first decimal playeratures are grown and the state of th | =Watt =Watt =Watt watts ce and record Enthalpy to two | decimal places.): | to get coil capacity. System efficiency is coil | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB Coil Capacity: CFM System Effective Efficiency Notes If the ductwork is installed in | Volts Volts Add th thalpy (Measure all temp = = x 4.5 x (Enthallow): Coil Capacity: | x Ampsx Ampsx Ampsx Amps ne above to get total system peratures to first decimal plane and perature and peratures to first decimal plane and perature peratu | =Watt =Watt =Watt watts be and record Enthalpy to two or BTUHEquipment Normal Capacity | decimal places.): =% ag air temperatures cou | to get coil capacity. System efficiency is coil capacity ÷ nominal capacity. | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB Coil Capacity: CFM System Effective Efficiency Notes If the ductwork is installed i from duct leakage and/or tr A difference between the co | Volts | x Ampsx Ampsx Ampsx Ampsx Ampsx Amps | | decimal places.): =% ag air temperatures couled capacity, comfort an | to get coil capacity. System efficiency is coil capacity ÷ nominal capacity. | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB System Effective Efficiency Notes If the ductwork is installed i from duct leakage and/or tr A difference between the colf the supply ducts leak, air | Volts | x Ampsx Ampsx Ampsx Ampsx Ampsx Ampsx eabove to get total system peratures to first decimal place. BTU/Lb Enthalpy be alpy a - b) =; bace, a difference between the ealing or insulating may be read the temperature delivered editioned space. | | decimal places.): =% ag air temperatures coued capacity, comfort andicates transmission | to get coil capacity. System efficiency is coil capacity ÷ nominal capacity. ald indicate delivered capacity loss and efficiency. gains through inadequate insulation. | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB System Effective Efficiency Notes If the ductwork is installed i from duct leakage and/or tr A difference between the colf the supply ducts leak, air | Volts | x Ampsx Ampsx Ampsx Ampsx Ampsx Ampsx eabove to get total system peratures to first decimal place. BTU/Lb Enthalpy be alpy a - b) =; bace, a difference between the ealing or insulating may be read the temperature delivered editioned space. | =Watt =Watt =Watt watts ce and record Enthalpy to two or BTUHEquipment Normal Capacity e room return air and coil entering commended to improve delivered to a supply terminal usually in | decimal places.): =% ag air temperatures coued capacity, comfort andicates transmission | to get coil capacity. System efficiency is coil capacity ÷ nominal capacity. ald indicate delivered capacity loss and efficiency. gains through inadequate insulation. | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB System Effective Efficiency Notes If the ductwork is installed i from duct leakage and/or tr A difference between the colf the supply ducts leak, air | Volts | x Ampsx Ampsx Ampsx Ampsx Ampsx above to get total system peratures to first decimal place. BTU/Lb Enthalpy be alpy a - b | =Watt =Watt =Watt watts ce and record Enthalpy to two of the second t | decimal places.): =% ag air temperatures couled capacity, comfort are indicates transmission m is likely inadequate | to get coil capacity. System efficiency is coil capacity ÷ nominal capacity. Ild indicate delivered capacity loss and efficiency. gains through inadequate insulation. ductwork. | | | | | | | System Watts (Power): Blower Motor Compressor Condenser Fan Converting Wet Bulb to En Coil Entering WB Coil Leaving WB System Effective Efficiency Notes If the ductwork is installed i from duct leakage and/or tr A difference between the colf the supply ducts leak, air | Volts | x Ampsx Ampsx Ampsx Ampsx Ampsx above to get total system peratures to first decimal place. BTU/Lb Enthalpy be alpy a - b | =Watt =Watt =Watt watts ce and record Enthalpy to two of the second t | decimal places.): =% ag air temperatures couled capacity, comfort are indicates transmission m is likely inadequate | to get coil capacity. System efficiency is coil capacity ÷ nominal capacity. ald indicate delivered capacity loss and efficiency. gains through inadequate insulation. | | | | | |